Context: Left ventricle diastolic dysfunction (LVDD) is gaining importance as useful marker of mortality and morbidity in cardiac surgical patients. Different algorithms have been proposed for the intraoperative grading of DD. Knowledge of the particular grade of DD has clinical implications with the potential to modify therapy, but there is a paucity of literature on the role of diastolic function evaluation during off-pump coronary artery bypass grafting (OPCABG) surgery.
Aims: The aim of this study was to monitor changes in LVDD using simplified algorithm proposed by Swaminathan et al. in patients undergoing OPCABG.
Settings and design: The study was conducted in a tertiary care level hospital; this was a prospective, observational study.
Subjects and methods: Fifty consecutive patients undergoing OPCABG were enrolled. Hemodynamic and echocardiographic parameters were measured at 6 stages in every patient namely after anesthetic induction (baseline), during left internal mammary artery (LIMA) to left anterior descending (LAD) grafting (LIMA → LAD), saphenous vein graft (SVG) to obtuse marginal (OM) grafting (SVG → OM), SVG to posterior descending artery (PDA) grafting (SVG → PDA), during proximal anastomosis of SVG to aorta, and postprotamine. The patients were classified in grades of LVDD as per simplified algorithm proposed by Swaminathan et al. using only intraoperatively measured E and E'.
Results: The success rate of measurement and classification of LVDD was 98.92% (277 out of 280 measurements). The grades of LVDD varied significantly as per surgical steps with maximum downgrading occurring during OM and LAD grafting. During OM grafting, none of the patients had normal diastolic function while 29% of patients exhibited restrictive pattern (Grade 3 LVDD). Patients with normal baseline LV diastolic function also exhibited downgrading during OM and LAD grafting. Postprotamine, 37% of patients with normal baseline diastolic function continued to exhibit some degree of DD.
Conclusions: The LVDD changes dynamically during various stages of OPCABG, which can be successfully monitored with simplified algorithm.