Organocobalt complexes represent a versatile tool in organic synthesis as they are important intermediates in Pauson-Khand, Friedel-Crafts, and Nicholas reactions. Herein, a single-molecule-level investigation addressing the formation of an organocobalt complex at a solid-vacuum interface is reported. Deposition of 4,4'-(ethyne-1,2-diyl)dibenzonitrile and Co atoms on the Ag(111) surface followed by annealing resulted in genuine complexes in which single Co atoms laterally coordinated to two carbonitrile groups undergo organometallic bonding with the internal alkyne moiety of adjacent molecules. Alternative complexation scenarios involving fragmentation of the precursor were ruled out by complementary X-ray photoelectron spectroscopy. According to density functional theory analysis, the complexation with the alkyne moiety follows the Dewar-Chatt-Duncanson model for a two-electron-donor ligand where an alkyne-to-Co donation occurs together with a strong metal-to-alkyne back-donation.
Keywords: alkynes; density functional calculations; organocobalt complexes; scanning tunneling microscopy; surface chemistry.
© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.