Purpose of review: This article describes and discusses the importance of monitoring patient-ventilator asynchrony, and the advantages and limitations of the specific techniques available at the bedside to evaluate it.
Recent findings: Signals provided by esophageal catheters (pressure or electromyogram) are the most reliable and accurate instruments to detect asynchronies. Esophageal signals (providing electrical activity of the diaphragm or/and esophageal pressure) have allowed the recent description of reverse triggering, a new kind of asynchrony, in which mechanical insufflation repeatedly triggers diaphragmatic contractions. However, the use of esophageal catheters is not widespread, and data on the prevalence and consequences of asynchronies are still scarce. The development of software solutions that continuously and automatically record breathing waveforms from the ventilator recording is emerging. Using this technology, recent data support the fact that asynchronies are frequent and may be negatively associated with outcome.
Summary: The prevalence and consequences of asynchronies may be largely underestimated because of a frequent lack of monitoring. Dedicated software solutions that continuously and automatically detect asynchronies may allow both clinical research and clinical applications aimed at determining the effects of asynchronies and minimizing their incidence among critically ill patients.