Diagnostic accuracy of the Depression subscale of the Hospital Anxiety and Depression Scale (HADS-D) for detecting major depression: protocol for a systematic review and individual patient data meta-analyses

BMJ Open. 2016 Apr 13;6(4):e011913. doi: 10.1136/bmjopen-2016-011913.

Abstract

Introduction: The Depression subscale of the Hospital Anxiety and Depression Scale (HADS-D) has been recommended for depression screening in medically ill patients. Many existing HADS-D studies have used exploratory methods to select optimal cut-offs. Often, these studies report results from a small range of cut-off thresholds; cut-offs with more favourable accuracy results are more likely to be reported than others with worse accuracy estimates. When published data are combined in meta-analyses, selective reporting may generate biased summary estimates. Individual patient data (IPD) meta-analyses can address this problem by estimating accuracy with data from all studies for all relevant cut-off scores. In addition, a predictive algorithm can be generated to estimate the probability that a patient has depression based on a HADS-D score and clinical characteristics rather than dichotomous screening classification alone. The primary objectives of our IPD meta-analyses are to determine the diagnostic accuracy of the HADS-D to detect major depression among adults across all potentially relevant cut-off scores and to generate a predictive algorithm for individual patients. We are already aware of over 100 eligible studies, and more may be identified with our comprehensive search.

Methods and analysis: Data sources will include MEDLINE, MEDLINE In-Process & Other Non-Indexed Citations, PsycINFO and Web of Science. Eligible studies will have datasets where patients are assessed for major depression based on a validated structured or semistructured clinical interview and complete the HADS-D within 2 weeks (before or after). Risk of bias will be assessed with the Quality Assessment of Diagnostic Accuracy Studies-2 tool. Bivariate random-effects meta-analysis will be conducted for the full range of plausible cut-off values, and a predictive algorithm for individual patients will be generated.

Ethics and dissemination: The findings of this study will be of interest to stakeholders involved in research, clinical practice and policy.

Keywords: Chronic illness; Diagnostic accuracy; Individual Patient Data Meta-Analysis; Major depression; PRIMARY CARE; Screening.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Anxiety / diagnosis
  • Depression / diagnosis*
  • Depressive Disorder, Major / diagnosis*
  • Female
  • Humans
  • Male
  • Mass Screening / methods
  • Mass Screening / standards*
  • Meta-Analysis as Topic
  • Middle Aged
  • Psychiatric Status Rating Scales
  • Reference Values
  • Research Design
  • Systematic Reviews as Topic