Strong antibacterial polydopamine (PDA) coatings prepared by a facile shaking-assisted method is reported for the first time. It was found that a minor modification made to the conventional synthesis procedure of PDA coatings, viz. replacing the static solution condition with a shaking solution condition by using a mechanical shaker, can produce the roughened polydopamine (rPDA) coatings at different substrates, e.g., glass, stainless steel, plastic, and gauze. The resulting rPDA coatings were characterized with Raman spectrum, zeta-potential analysis and contact angle measurement. The antibacterial activity of the rPDA coatings was evaluated by a shake flask test with gram-positive Staphylococcus aureus, and gram-negative Escherichia coli and Pseudomonas aeruginosa as bacteria models. Testing results revealed that, in the absence of any other antibacterial agents, the rPDA coatings exhibited remarkably enhanced antibacterial activities. In addition, such enhanced antibacterial activities of the rPDA coatings were found to be unimpaired by steam sterilization treatments.