The presence of ganglioside GD1b, in lactone form GD1b-L, was ascertained in rat brain. The possible formation of GD1b-L from GD1b in brain was explored by the intracisternal injection of GD1b, 3H-labelled at the level of the terminal galactose. This was followed by recognition of the radioactive gangliosides formed at different times (1, 3, and 7 days) after injection. Whereas at 0 time after injection the only radioactive ganglioside was GD1b, after 1, 3, and 7 days other radioactive gangliosides were also found, thus indicating GD1b penetration into the brain tissue, followed by metabolic processing. Besides GD1b, the following radioactive gangliosides were recognized: GM1 and GM2, derived from GD1b degradation; GT1b, formed by the direct sialylation of GD1b; and GD1b-L, produced by metabolic lactonization. The radioactivity carried by GD1b-L was maximal 3 days after injection; its time course was different from that of the other gangliosides, suggesting that the process of lactonization is separate from that of both degradation and glycosylation. Under the same experimental conditions, some radioactive gangliosides also appeared in the liver, although in much smaller amounts than in brain. Radioactive GD1b-L could not be detected in liver, thus indicating that metabolic lactonization is a tissue- or organ-specific process.