Hypoxia is one of the most important environmental factors which affect fish growth, development and survival, but regulation mechanisms of hypoxia in fish remain unclear. Therefore, to further understand molecular functions of factor inhibiting HIF-1 (Fih-1), an essential hypoxia sensor, the full-length cDNA of fih-1 was cloned from Megalobrama amblycephala, a hypoxia-sensitive cyprinid fish. The deduced amino acid sequence showed high homology with that of other vertebrates, and all structural and functional domains were highly conserved. The mRNA level in different tissues and developmental stages indicated that M. amblycephala fih-1 expression was higher in liver and muscle, followed by gill, intestine and spleen. During embryogenesis, the fih-1 mRNA was highly expressed in the early embryonic development, then decreased to a very low level, and maintained a relative high level of expression after hatching. In most tissues, the fih-1 mRNA was down-regulated at 2 h but up-regulated at 4 h after hypoxia treatment. In addition, the promoter sequence of M. amblycephala fih-1 was obtained using thermal asymmetric interlaced PCR. Three single nucleotide polymorphism (SNP) sites were found in the cDNA and promoter sequences, and identified significant association with hypoxia trait by correlation analysis in hypoxia-sensitive group and hypoxia-tolerant group. These results demonstrated that M. amblycephala fih-1 plays important roles in embryo development and hypoxia response, which will contribute to systematic understanding of the molecular mechanisms of fish in response to hypoxia, and provide help for fish genetic breeding with hypoxia-tolerant strains or breeds.
Keywords: Expression; Fih-1; Hypoxia; Megalobrama amblycephala; SNPs.