Similar molecular determinants on Rem mediate two distinct modes of inhibition of CaV1.2 channels

Channels (Austin). 2016 Sep 2;10(5):379-394. doi: 10.1080/19336950.2016.1180489. Epub 2016 Apr 26.

Abstract

Rad/Rem/Rem2/Gem (RGK) proteins are Ras-like GTPases that potently inhibit all high-voltage-gated calcium (CaV1/CaV2) channels and are, thus, well-positioned to tune diverse physiological processes. Understanding how RGK proteins inhibit CaV channels is important for perspectives on their (patho)physiological roles and could advance their development and use as genetically-encoded CaV channel blockers. We previously reported that Rem can block surface CaV1.2 channels in 2 independent ways that engage distinct components of the channel complex: (1) by binding auxiliary β subunits (β-binding-dependent inhibition, or BBD); and (2) by binding the pore-forming α1C subunit N-terminus (α1C-binding-dependent inhibition, or ABD). By contrast, Gem uses only the BBD mechanism to block CaV1.2. Rem molecular determinants required for BBD CaV1.2 inhibition are the distal C-terminus and the guanine nucleotide binding G-domain which interact with the plasma membrane and CaVβ, respectively. However, Rem determinants for ABD CaV1.2 inhibition are unknown. Here, combining fluorescence resonance energy transfer, electrophysiology, systematic truncations, and Rem/Gem chimeras we found that the same Rem distal C-terminus and G-domain also mediate ABD CaV1.2 inhibition, but with different interaction partners. Rem distal C-terminus interacts with α1C N-terminus to anchor the G-domain which likely interacts with an as-yet-unidentified site. In contrast to some previous studies, neither the C-terminus of Rem nor Gem was sufficient to inhibit CaV1/CaV2 channels. The results reveal that similar molecular determinants on Rem are repurposed to initiate 2 independent mechanisms of CaV1.2 inhibition.

Keywords: CaV1.2; Gem; L-type calcium channel; RGK protein; Rem.

MeSH terms

  • Animals
  • Calcium Channels, L-Type / physiology*
  • Cells, Cultured
  • HEK293 Cells
  • Heart Ventricles / cytology
  • Humans
  • Male
  • Monomeric GTP-Binding Proteins / physiology*
  • Myocytes, Cardiac / physiology
  • Rats, Sprague-Dawley

Substances

  • Calcium Channels, L-Type
  • L-type calcium channel alpha(1C)
  • Rem protein, mouse
  • GEM protein, human
  • Monomeric GTP-Binding Proteins