Increasing energy demand has spurred interest in the use of biofuels. Jatropha curcas (physic nut), an inedible oilseed, is a potential source of bioenergy. The seeds, however, contain allergens such as Jat c 1, a 2S albumin that can induce hypersensitivity reactions in humans and result in allergic diseases. Recent advances in identifying and characterizing plant allergens and, in particular, their immunoglobulin E (IgE)-binding epitopes have produced a wealth of information. We identified IgE-binding regions and the critical amino acids involved in the degranulation of mast cells and the release of histamine, preliminary steps for the prevention and treatment of this allergy. Four IgE-binding regions were identified in the sequence of Jat c 1. We identified and demonstrated the fundamental role of two glutamic acid residues in IgE binding. The sequence LEKQLEEGEVGS produces a random loop on the most exposed part of Jat c 1. This region is important to the stimulation of the allergic response. The possibility of using this information to produce vaccines and other pharmacological agents for allergy treatment is discussed.
Keywords: 2S albumin; Allergen; Biofuel; IgE-binding peptide; Jatropha curcas.