Downregulation of O-linked N-acetylglucosamine transferase by RNA interference decreases MMP9 expression in human esophageal cancer cells

Oncol Lett. 2016 May;11(5):3317-3323. doi: 10.3892/ol.2016.4428. Epub 2016 Apr 7.

Abstract

O-linked N-acetylglucosamine transferase (OGT) catalyzes O-linked glycosylation (O-GlcNAcylation). O-GlcNAcylation is a post-translational carbohydrate modification of diverse nuclear and cytosolic proteins by the addition of O-linked β-N-acetylglucosamine. It was recently demonstrated that OGT and the level of O-GlcNAcylation are upregulated in esophageal cancer; however, the physiological consequences of this upregulation remain unknown. The current study reports that OGT knockdown by short hairpin RNA (shRNA) did not affect cell viability; however, cell migration in esophageal cancer Eca-109 cells was significantly reduced. OGT-specific shRNA vectors efficiently decreased the protein and mRNA levels of OGT and the RL2 level (a marker of O-GlcNAcylation levels) in Eca-109 esophageal cancer cells. In addition, colony formation and cell proliferation assays demonstrated that OGT-specific shRNA decreased the proliferation of Eca-109 cells; however, there was no significant statistical difference between OGT-specific shRNA and control shRNA. Notably, transwell assays demonstrated that the migratory ability of Eca-109 cells was significantly suppressed following knockdown of the OGT gene. Correspondingly, western blot analyses demonstrated that OGT knockdown significantly downregulated the expression of matrix metalloproteinase 9 (MMP9) in Eca-109 cells. These results suggest that OGT may promote the migration, invasion and metastasis of esophageal cancer cells by enhancing the stability or expression of MMP9.

Keywords: esophageal cancer; matrix metalloproteinase 9; metastasis; polypeptide; β-N-acetylglucosaminyltransferase (OGT).