Vitamin A deficiency (VAD) is a serious and widespread public health problem and the leading cause of preventable blindness in young children. It is also associated with increased rates of death from severe infections, especially in developing countries. Over the past 35 years, researchers have examined the numerous activities of vitamin A in different tissues of the human body. VAD can lead to a series of ocular symptoms, anemia, and weak resistance to infection, which can increase the severity of infectious diseases and the risk of death. Cell development, vision, growth, and normal metabolism are among the vital processes that are insufficiently supported in the presence of VAD. VAD leads to impaired tissue function especially during the developmental periods of infancy, childhood, pregnancy, and lactation. We describe a multidirectional model of VAD that demonstrates how VAD can have progressive, negative effects on vital processes of the human body throughout the life cycle. This model starts with impaired intake and its link to decreased absorption and digestion and includes outcomes such as malnutrition, inflammation, and improper growth processes, including possible mechanisms. Together, these clinical and biochemical manifestations contribute to the vicious cycle of VAD.
Keywords: Vitamin A; Vitamin A deficiency; growth; immunity; inflammation; malnutrition.