Reactive oxygen species measure for rapid detection of infection in fluids

Ann Intensive Care. 2016 Dec;6(1):41. doi: 10.1186/s13613-016-0142-8. Epub 2016 Apr 29.

Abstract

Background: Early detection of infection is critical to rapidly starting effective treatment. Diagnosis can be difficult, particularly in the intensive care unit (ICU) population. Because the presence of polymorphonuclear neutrophils in tissues is the hallmark of inflammatory processes, the objective of this proof of concept study was to determine whether the measurement of reactive oxygen species (ROS) could be an efficient diagnostic tool to rapidly diagnose infections in peritoneal, pleural and bronchoalveolar lavage (BAL) fluids in ICU patients.

Methods: We prospectively included all patients hospitalized in the 21-bed surgical ICU of a teaching hospital from June 2010 to February 2014 who presented with systemic inflammatory response syndrome with suspicion of a peritoneal or pleural fluid or pulmonary infection needing a BAL. Instantaneous basal ROS production was measured in fluids and after phorbol 12-myristate 13-acetate (PMA) stimulation. We compared patients with infected fluids to those with non-infected fluids.

Results: The overall ICU mortality rate was 34 %. A majority of patients were sampled following a delay of 5 days (2-12) after ICU admission, with most receiving antibiotics at the time of fluid sampling (71 %). Fluids were infected in 21/65 samples: 6/17 peritoneal fluids, 8/28 pleural fluids and 7/20 BALs. ROS production was significantly higher in the infected than in the non-infected group at baseline and after PMA stimulation in the peritoneal and pleural fluids but not in BAL.

Conclusion: Assessing instantaneous ROS production appears as a fast and reliable diagnostic method for detecting peritoneal and pleural fluid infection.

Keywords: Ascites; Bronchoalveolar lavage; Critical care; Diagnosis; Infection; Inflammation; Pleural effusion; Polymorphonuclear neutrophils; Reactive oxygen species.