Background: BK polyomavirus (BKPyV) frequently reactivates in kidney transplant recipients during immunosuppressive therapy and triggers BKPyV-associated nephropathy and graft rejection. Determining effective risk factors for BKPyV reactivation is required to achieve efficient prevention.
Methods: This study investigated the role of major histocompatibility complex (MHC) class I-related chain A (MICA) in BKPyV reactivation in a cohort of 144 transplant donor/recipient pairs, including recipients with no reactivation (controllers) and those with mild (virurics) or severe (viremics) BKPyV reactivation after graft receipt.
Results: We show that, in the kidney, MICA is predominantly expressed in tubule epithelial cells, the natural targets of BKPyV, questioning a role for MICA in the immune control of BKPyV infection. Focusing on MICA genotype, we found a lower incidence of BKPyV reactivation in recipients of a renal graft from a donor carrying the MICA A5.1 mutant, which encodes a truncated nonconventional MICA. We established that a mismatch for MICA A5.1 between transplant donor and recipient is critical for BKPyV reactivation and BKPyV-associated nephropathy. Functionally, we found that a low prevalence of BKPyV reactivation was associated with elevated anti-MICA sensitization and reduced plasma level of soluble MICA in recipients, 2 potential effector mechanisms.
Discussions: These findings identify the MHC-related MICA as an immunogenetic factor that may functionally influence anti-BKPyV immune responses and infection outcomes.
Keywords: BK polyomavirus; MICA A5.1 mutation; MICA polymorphism; innate immunity; kidney transplantation.
© The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail [email protected].