In this study, we analyzed the genetic profiles of squamous cell lung carcinoma (SqCLC) to identify potential therapeutic targets. Approximately 2,800 COSMIC mutations from 50 genes were determined by next-generation sequencing. Amplification/deletion of SOX2, CDKN2A, PTEN, FGFR1, EGFR, CCND1, HER2 and PDGFRA were detected by FISH and expression of VEGFR2, PD-L1 and PTEN were examined by IHC. One hundred and fifty-seven samples of SqCLC were collected. Somatic mutations was identified in 73.9% of cases, with TP53 (56.1%), CDKN2A (8.9%), PIK3CA (8.9%), KRAS (4.5%) and EGFR (3.2%). Gene copy number alterations were identified in 75.8% of cases, including SOX2 amplification (31.2%), CDKN2A deletion (21.7%), PTEN deletion (16.6%), FGFR1 amplification (15.9%), EGFR amplification (14.0%), CCND1 amplification (14.0%), HER2 amplification (9.6%) and PDGFRA amplification (7.6%). Positive expression of VEGFR2 and PD-L1 and loss of PTEN expression were observed in 80.5%, 47.2%, and 42.7% of cases, respectively. Multivariate analysis showed that positive expression of PD-L1 was an independent favorable prognostic factor for DFS (HR = 0.610; P = 0.044). In conclusion, nearly all (93.6%) SqCLC cases harbored at least one potential druggable target. The findings of this study could facilitate the identification of therapeutic target candidates for precision medicine of SqCLC.
Keywords: fluorescence in situ hybridization; genetic alteration; next-generation sequencing; squamous cell lung carcinoma; targeted therapy.