Identification of novel anti-cancer compounds with high efficacy and low toxicity is critical in drug development. High-throughput screening and other such strategies are generally resource-intensive. Therefore, in silico computer-aided drug design has gained rapid acceptance and popularity. We employed our proprietary computational platform (CHEMSAS®), which uses a unique combination of traditional and modern pharmacology principles, statistical modeling, medicinal chemistry, and machine-learning technologies to discover and optimize novel compounds that could target various cancers. COTI-2 is a small molecule candidate anti-cancer drug identified using CHEMSAS. This study describes the in vitro and in vivo evaluation of COTI-2. Our data demonstrate that COTI-2 is effective against a diverse group of human cancer cell lines regardless of their tissue of origin or genetic makeup. Most treated cancer cell lines were sensitive to COTI-2 at nanomolar concentrations. When compared to traditional chemotherapy or targeted-therapy agents, COTI-2 showed superior activity against tumor cells, in vitro and in vivo. Despite its potent anti-tumor efficacy, COTI-2 was safe and well-tolerated in vivo. Although the mechanism of action of COTI-2 is still under investigation, preliminary results indicate that it is not a traditional kinase or an Hsp90 inhibitor.
Keywords: CHEMSAS; COTI-2; cancer; small molecule; targeted-therapy.