Mild traumatic brain injury (mTBI) patients frequently experience emotion dysregulation symptoms, including post-traumatic stress. Although mTBI likely affects cortical activation and structure, resulting in cognitive symptoms after mTBI, early effects of mTBI on cortical emotion processing circuits have rarely been examined. To assess early mTBI effects on cortical functional and structural components of emotion processing, we assessed cortical activation to fearful faces within the first 2 weeks after motor vehicle collision (MVC) in survivors who did and did not experience mTBI. We also examined the thicknesses of cortical regions with altered activation. MVC survivors with mTBI (n = 21) had significantly less activation in left superior parietal gyrus (SPG) (-5.9, -81.8, 33.8; p = 10-3.623), left medial orbitofrontal gyrus (mOFG) (-4.7, 36.1, -19.3; p = 10-3.231), and left and right lateral orbitofrontal gyri (lOFG) (left: -16.0, 41.4, -16.6; p = 10-2.573; right: 18.7, 22.7, -17.7; p = 10-2.764) than MVC survivors without mTBI (n = 23). SPG activation in mTBI survivors within 2 weeks after MVC was negatively correlated with subsequent post-traumatic stress symptom severity at 3 months (r = -0.68, p = 0.03). Finally, the SPG region was thinner in the mTBI survivors than in the non-mTBI survivors (F = 11.07, p = 0.002). These results suggest that early differences in activation and structure in cortical emotion processing circuits in trauma survivors who sustain mTBI may contribute to the development of emotion-related symptoms.
Keywords: MRI, TBI; human studies.