Effects of habitual aerobic exercise on the relationship between intramyocellular or extramyocellular lipid content and arterial stiffness

J Hum Hypertens. 2016 Oct;30(10):606-12. doi: 10.1038/jhh.2016.28. Epub 2016 May 12.

Abstract

The accumulation of intramyocellular lipid (IMCL) and extramyocellular lipid (EMCL) is associated with arterial stiffness in middle-aged and older adults. Habitual aerobic exercise induces the improvement of arterial stiffness with reduction in fat accumulation. However, the relationship between aerobic exercise-induced changes in muscular lipids and arterial stiffness remains unclear. The purpose of this study was to investigate whether habitual aerobic exercise-induced changes in IMCL and EMCL content would lead to an improvement of arterial stiffness. First, in a cross-sectional study, we investigated whether cardiorespiratory fitness level affects the association between IMCL or EMCL content and arterial stiffness in 60 middle-aged and older subjects (61.0±1.3 years). Second, in an intervention study, we examined whether aerobic exercise training-induced changes in IMCL and EMCL content are associated with a reduction in arterial stiffness in 18 middle-aged and older subjects (67.0±1.7 years). In the cross-sectional study, IMCL content was negatively correlated with brachial-ankle pulse wave velocity (baPWV) (r=-0.47, P<0.05), whereas EMCL content was positively correlated with baPWV (r=0.48, P<0.05) in the low-fitness group, but was not correlated in the high-fitness group. Furthermore, 8-week aerobic exercise training in older adults increased IMCL content and reduced EMCL content. The training-induced change in baPWV was negatively correlated with training-induced changes in IMCL but was positively correlated with training-induced changes in EMCL. These findings suggest that aerobic exercise training-induced changes in IMCL and EMCL content may be related to a reduction in arterial stiffness in middle-aged and older adults.

Publication types

  • Clinical Trial
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cross-Sectional Studies
  • Exercise / physiology*
  • Female
  • Humans
  • Lipid Metabolism*
  • Male
  • Middle Aged
  • Muscle Cells / metabolism*
  • Vascular Stiffness*