Src-dependent phosphorylation of caveolin-1 Tyr-14 promotes swelling and release of caveolae

Mol Biol Cell. 2016 Jul 1;27(13):2090-106. doi: 10.1091/mbc.E15-11-0756. Epub 2016 May 11.

Abstract

Caveolin 1 (Cav1) is a required structural component of caveolae, and its phosphorylation by Src is associated with an increase in caveolae-mediated endocytosis. Here we demonstrate, using quantitative live-cell 4D, TIRF, and FRET imaging, that endocytosis and trafficking of caveolae are associated with a Cav1 Tyr-14 phosphorylation-dependent conformational change, which spatially separates, or loosens, Cav1 molecules within the oligomeric caveolar coat. When tracked by TIRF and spinning-disk microscopy, cells expressing phosphomimicking Cav1 (Y14D) mutant formed vesicles that were greater in number and volume than with Y14F-Cav1-GFP. Furthermore, we observed in HEK cells cotransfected with wild-type, Y14D, or Y14F Cav1-CFP and -YFP constructs that FRET efficiency was greater with Y14F pairs than with Y14D, indicating that pY14-Cav1 regulates the spatial organization of Cav1 molecules within the oligomer. In addition, albumin-induced Src activation or direct activation of Src using a rapamycin-inducible Src construct (RapR-Src) led to an increase in monomeric Cav1 in Western blots, as well as a simultaneous increase in vesicle number and decrease in FRET intensity, indicative of a Src-mediated conformational change in CFP/YFP-tagged WT-Cav1 pairs. We conclude that phosphorylation of Cav1 leads to separation or "spreading" of neighboring negatively charged N-terminal phosphotyrosine residues, promoting swelling of caveolae, followed by their release from the plasma membrane.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biological Transport
  • Caveolae / metabolism*
  • Caveolin 1 / genetics*
  • Caveolin 1 / metabolism*
  • Cell Culture Techniques
  • Cell Membrane / metabolism
  • Endocytosis / physiology
  • HEK293 Cells
  • Humans
  • Mice
  • Mice, Knockout
  • Phosphorylation
  • Protein Transport
  • src-Family Kinases / metabolism

Substances

  • Caveolin 1
  • src-Family Kinases