Smooth muscle cells (SMC) are the predominant cell type involved in the pathogenesis of atherosclerosis, vascular calcification and restenosis after angioplasty; however, they are also important in the de novo formation of blood vessels through differentiation of mesenchymal cells under the influence of mediators secreted by endothelial cells. In angiogenesis, vascular SMC are formed by proliferation of existing SMC or maturation and differntiation of pericytes. Experimental findings have demonstrated a potential role of putative smooth muscle progenitor cells in the circulation or within adult tissues and the perivascular adventitia in the development of atherosclerotic plaques, restenosis and angiogenesis. Modulation of vascular smooth muscle phenotype, SMC migration and hypertrophy are now recognized as key events in the development of vascular diseases. This has led to an increase in experimental research on SMC function in response to growth factors, extracellular matrix components, modified lipoproteins, biomechanical forces and other pro-atherogenic and pro-angiogenic mediators to address the cellular mechanisms involved. This chapter highlights well established methodologies used for vascular SMC and pericyte isolation and culture as well as their characterisation. A better understanding of vascular SMC and pericyte biology and their phenotypic modulation is required to identify therapeutic strategies to target angiogenesis and treat cardiovascular diseases.
Keywords: Angiogenesis; Atherosclerosis; Cell Culture; Pericyte; Phenotype; Smooth Muscle Cell.