Glucosinolates, found principally in the plant order Brassicales, are modulated by different post-harvest processing operations. Among these, ionizing radiation, a non-thermal process, has gained considerable interest for ensuring food security and safety. In gamma-irradiated cabbage, enhanced sinigrin, a major glucosinolate, has been reported. However, the molecular basis of such a radiation induced effect is not known. Herein, the effect of radiation processing on the expression of glucosinolate biosynthetic genes was investigated. RT-PCR based expression analysis of seven glucosinolate biosynthetic pathway genes (MYB28, CYP79F1, CYP83A1, SUR1, UGT74B1, SOT18 and TGG1) showed that CYP83A1, MYB28, UGT74B1, CYP79F1 and SUR1 were up-regulated in irradiated cabbage. The content of jasmonates, signalling molecules involved in glucosinolate induction was, however, unaffected in irradiated cabbage suggesting their non-involvement in glucosinolate induction during radiation processing. This is the first report on the effect of gamma irradiation on the expression of glucosinolate biosynthetic genes in vegetables.
Keywords: Brassica oleracea; Gene expression; Glucosinolates; Jasmonates.
Copyright © 2016 Elsevier Ltd. All rights reserved.