It is generally regarded that E-cadherin is downregulated during tumorigenesis via Snail/Slug-mediated E-cadherin transcriptional reduction. However, this transcriptional suppressive mechanism cannot explain the failure of producing E-cadherin protein in metastatic breast cancer cells after overexpressing E-cadherin mRNA. Here we reveal a novel mechanism that E-cadherin is post-transcriptionally regulated by Slug-promoted miR-221, which serves as an additional blocker for E-cadherin expression in metastatic tumor cells. Profiling the predicted E-cadherin-targeting miRNAs in breast cancer tissues and cells showed that miR-221 was abundantly expressed in breast tumor and metastatic MDA-MB-231 cells and its level was significantly higher in breast tumor or MDA-MB-231 cells than in distal non-tumor tissue and low-metastatic MCF-7 cells, respectively. MiR-221, which level inversely correlated with E-cadherin level in breast cancer cells, targeted E-cadherin mRNA open reading frame (ORF) and suppressed E-cadherin protein expression. Depleting or increasing miR-221 level in breast cancer cells induced or decreased E-cadherin protein level, leading to suppressing or promoting tumor cell progression, respectively. Moreover, miR-221 was specifically upregulated by Slug but not Snail. TGF-β treatment enhanced Slug activity and thus increased miR-221 level in MCF-7 cells. In summary, our results provide the first evidence that Slug-upregulated miR-221 promotes breast cancer progression via reducing E-cadherin expression.