In the course of studies on Sylgard 184 (S-PDMS), we discovered strong effects on receding contact angles (CAs), θrec, while cure conditions have little effect on advancing CAs. Network formation at high temperatures resulted in high θadv of 115-120° and high θrec ≥ 80°. After network formation at low temperatures (≤25 °C), θadv was still high but θrec was 30-50°. Uncertainty about compositional effects on wetting behavior resulted in similar experiments with a model D(V)D(H) silicone elastomer (Pt-PDMS) composed of a vinyl-terminated poly(dimethylsiloxane) (PDMS) base and a polymeric hydromethylsilane cross-linker. Again, network formation at high temperature (∼100 °C) resulted in high CAs, while low-temperature curing retained high advancing CAs but gave low receding CAs (θrec 30-50°). These changes in receding CAs translate to strong effects on water adhesion, wp, which is the actual work required to separate a liquid (water) from a surface: wp ∝ (1 + θrec). When the values θrec 84° for high-temperature and θrec 50° for low-temperature network formation are used, wp is ∼1.5 times higher for curing at low temperature. The origin of low receding contact angles was investigated by attenuated total reflectance IR spectroscopy. Absorptions for Si-OH hydrogen-bonded to water (3350 cm(-1)) were stronger for low- versus high-temperature curing. This result is attributed to faster hydrosilylation during curing at higher temperatures that consumes Si-H before autoxidation to Si-OH. Sharp bands at 3750 and 3690 cm(-1) due to isolated -Si-OH are more prominent for Pt-PDMS than those for S-PDMS, which may be due to an effect of functionalized nanofiller. To explore the impact of wp on water droplet flow, gradient coatings of S-PDMS and Pt-PDMS elastomers were prepared by coating a slide, maintaining opposite ends at high and low temperatures and thus forming a thermal gradient. When the slide was tilted, a droplet moved easily on the high-temperature end (slippery surface) but became pinned at the low-temperature end (sticky surface) and did not move when the slide was rotated 180°. The surface was therefore a "one-way street" for water droplet flow. Theory provides fundamental understanding for slippery/sticky behavior for gradient S-PDMS and Pt-PDMS coatings. A model for network formation is based on hydrosilylation at high temperature and condensation curing of Si-OH from autoxidation of Si-H at low temperatures. In summary, network formation conditions strongly affect receding contact angles and water adhesion for Sylgard 184 and the filler-free mimic Pt-PDMS. These findings suggest careful control of curing conditions is important to silicones used in microfluidic devices or as biomedical materials. Network-forming conditions also impact bulk mechanical properties for Sylgard 184, but the range that can be obtained has not been critically examined for specific applications.
Keywords: ATR-IR; PDMS; Pt cure; contact angles; curing temperature; gradient wetting; water adhesion.