To enhance the effectiveness of fertilizers, a novel double-coated slow-release fertilizer was developed using ethyl cellulose (EC) as inner coating and starch-based superabsorbent polymer (starch-SAP) as outer coating. For starch-SAPs synthesized by a twin-roll mixer using starches from three botanical origins, a reduced grid size and an increased fractal gel size on nano-scale (i.e., increased stretch of 3D network) contributed to increasing the water absorbing capacity with a reduced absorbing rate and thus improving the slow-release property of fertilizer. The fertilizer particles coated with starch-SAP displayed well slow-release behaviors. In soil, compared to urea particles without and with EC coating, the particles further coated with starch-SAP showed reduced nitrogen release rate, and in particular, those with potato starch-SAP coating exhibited a steady release behavior for a period longer than 96h. Therefore, this work has demonstrated the potential of this new slow-release fertilizer system for improving the effectiveness of fertilizers.
Keywords: Different botanical origins; Nutrient slow-release; Slow-release fertilizer; Starch-based superabsorbent polymer.
Copyright © 2016 Elsevier Ltd. All rights reserved.