EGFR-Mediated Reactivation of MAPK Signaling Induces Acquired Resistance to GSK2118436 in BRAF V600E-Mutant NSCLC Cell Lines

Mol Cancer Ther. 2016 Jul;15(7):1627-36. doi: 10.1158/1535-7163.MCT-15-0375. Epub 2016 May 11.

Abstract

Although treatment of BRAF V600E-mutant non-small cell lung cancer (NSCLC(V600E)) with GSK2118436 has shown an encouraging efficacy, most patients develop resistance. To investigate the mechanisms of acquired resistance to GSK2118436 in NSCLC(V600E), we established GSK2118436-resistant (GSR) cells by exposing MV522 NSCLC(V600E) to increasing GSK2118436 concentrations. GSR cells displayed activated EGFR-RAS-CRAF signaling with upregulated EGFR ligands and sustained activation of ERK1/2, but not MEK1/2, in the presence of GSK2118436. Treatment of GSR cells with GSK2118436 enhanced EGFR-mediated RAS activity, leading to the formation of BRAF-CRAF dimers and transactivation of CRAF. Interestingly, sustained activation of ERK1/2 was partly dependent on receptor-interacting protein kinase-2 (RIP2) activity, but not on MEK1/2 activity. Combined BRAF and EGFR inhibition blocked reactivation of ERK signaling and improved efficacy in vitro and in vivo Our findings support the evaluation of combined BRAF and EGFR inhibition in NSCLC(V600E) with acquired resistance to BRAF inhibitors. Mol Cancer Ther; 15(7); 1627-36. ©2016 AACR.

Publication types

  • Retracted Publication

MeSH terms

  • Amino Acid Substitution
  • Animals
  • Antineoplastic Agents / pharmacology
  • Autocrine Communication
  • Carcinoma, Non-Small-Cell Lung / drug therapy
  • Carcinoma, Non-Small-Cell Lung / genetics*
  • Carcinoma, Non-Small-Cell Lung / metabolism*
  • Carcinoma, Non-Small-Cell Lung / pathology
  • Cell Line, Tumor
  • Cell Survival / drug effects
  • Codon
  • DNA Mutational Analysis
  • Disease Models, Animal
  • Drug Resistance, Neoplasm / genetics*
  • ErbB Receptors / metabolism*
  • Extracellular Signal-Regulated MAP Kinases / metabolism
  • Humans
  • Imidazoles / pharmacology*
  • Lung Neoplasms / drug therapy
  • Lung Neoplasms / genetics*
  • Lung Neoplasms / metabolism*
  • Lung Neoplasms / pathology
  • MAP Kinase Signaling System*
  • Mice
  • Models, Biological
  • Mutation*
  • Oximes / pharmacology*
  • Phosphorylation
  • Protein Kinase Inhibitors / pharmacology
  • Proto-Oncogene Proteins B-raf / genetics*
  • Receptor-Interacting Protein Serine-Threonine Kinase 2 / metabolism
  • Xenograft Model Antitumor Assays
  • ras Proteins / metabolism

Substances

  • Antineoplastic Agents
  • Codon
  • Imidazoles
  • Oximes
  • Protein Kinase Inhibitors
  • ErbB Receptors
  • Proto-Oncogene Proteins B-raf
  • Receptor-Interacting Protein Serine-Threonine Kinase 2
  • Extracellular Signal-Regulated MAP Kinases
  • ras Proteins
  • dabrafenib