Amyotrophic lateral sclerosis (ALS) is an incurable neurological degenerative disease. It can cause irreversible neurological damage to motor neurons; typical symptoms include muscle weakness and atrophy, bulbar paralysis and pyramidal tract signs. The ALS-mimicking disease cervical spondylotic myelopathy (CSM) presents similar symptoms, but analysis of breath volatile organic compounds (VOCs) can potentially be used to distinguish ALS from CSM. In this study, breath samples were collected from 28 ALS and 13 CSM patients. Subsequently, gas chromatography/mass spectrometry (GCMS) was used to analyze breath VOCs. Principal component analysis (PCA) and orthogonal partial least-squares discriminant analysis (OPLSDA) were the statistical methods used to process the final data. We identified 4 compounds with significantly decreased levels in ALS patients compared with CSM controls: (1) carbamic acid, monoammonium salt; (2) 1-alanine ethylamide, (S)-; (3) guanidine, N,N-dimethyl-; and (4) phosphonic acid, (p-hydroxyphenyl)-. Currently, the metabolic origin of the VOCs remains unclear; however, several pathways might explain the decreasing trends observed. The results of this study demonstrate that there are specific VOC profiles associated with ALS and CSM patients that can be used to differentiate between the two. In addition, these metabolites could contribute to a better understanding of the underlying pathophysiological mechanisms of ALS.