Salvage radiotherapy (SRT) is the first-line treatment for prostate cancer patients with biochemical recurrence following radical prostatectomy, and new specific radiosensitizers are in urgent need to enhance SRT effect. MLN4924 (also known as Pevonedistat), a specific inhibitor of NEDD8-activating enzyme, has recently entered phase I/II clinical trials in several malignancies. By inhibiting cullin neddylation, MLN4924 inactivates Cullin-RING ligases (CRL), which have been validated as an attractive radiosensitizing target. In our study, we demonstrate that MLN4924 can be used as a potent radiosensitizer in hormone-resistant prostate cancer cells. We found that MLN4924 inhibited cullin neddylation and sensitized prostate cancer cells to irradiation (IR). Mechanistically, MLN4924 enhanced IR-induced G2 cell-cycle arrest, by inducing accumulation of WEE1/p21/p27, three well-known CRL substrates. Importantly, siRNA knockdown of WEE1/p21/p27 partially abrogated MLN4924-induced G2 cell-cycle arrest, indicating a causal role of WEE1/p21/p27 in MLN4924-induced radiosensitization. Further mechanistic studies revealed that induction of DNA damage and apoptosis also contributed to MLN4924 radiosensitization in hormone-resistant prostate cancer cells. Our findings lay the foundation for future application of MLN4924 as a potential radiosensitizer in hormone refractory prostate cancer (HRPC).
Keywords: Cullin-RING ligases; MLN4924 (pevonedistat); neddylation; prostate cancer; radiotherapy.