An autosomal recessive mutation, termed fatty liver dystrophy (fld), can be identified in neonatal mice by their enlarged and fatty liver (Sweet, H. O., Birkenmeier, E. H., and Davisson, M. T. (1988) Mouse News Letter 81, 69). We have examined the underlying metabolic abnormalities in fld/fld mice from postnatal days 3-40. Serum and hepatic triglyceride levels were elevated 5-fold in suckling fld/fld mice compared to their +/? littermates but abruptly resolved at the suckling/weaning transition. Blot hybridization analysis of liver and intestinal RNAs revealed a liver-specific increase in apolipoprotein (apo) A-IV and C-II mRNA concentrations (100- and 6-fold, respectively) that was limited to the suckling and early weaning stages in fld/fld mice. Resolution of these differences during the weaning period could not be delayed by prolonging suckling to the 20th postnatal day nor could the mutant phenotype be elicited in young adult animals with a high fat diet. Lipoprotein lipase (LPL) activity was reduced 16-fold in the white adipose tissue of fld/fld mice until the onset of weaning. Heart activity was decreased less than 2-fold, but there were no deficits in brown adipose tissue or liver. Hepatic lipase (HL) mRNA levels and activity were significantly reduced in fld/fld livers and sera, respectively, during the suckling period. Mapping studies show the fld locus to be distinct from loci encoding LPL, HL, and apoA-IV, and those responsible for the combined lipase deficiencies in cld/cld and W/Wv mice. These data suggest that the fld mutation is associated with developmentally programmed tissue-specific defects in the neonatal expression of LPL and HL activities and provide evidence for a new regulatory locus which affects these lipase activities. This mutation could serve as a useful model for (i) analyzing the homeostatic mechanisms controlling lipid metabolism in newborn mice and (ii) understanding and treating certain inborn errors in human triglyceride metabolism.