The unprecedented N-pyridin-2-yl substituted benzo(thio)amides were prepared and subsequently converted into the cyclic difluoroboranyl (BF2) derivatives. Mass spectrometry, multinuclear NMR, IR, and elemental analysis confirmed the structure of these compounds. UV/vis and fluorescence spectroscopy as well as first-principle calculations were used to study their properties. For the first time, the influence of both the O/S replacement and presence/absence of the BF2 moiety on the photophysical properties of compounds exhibiting charge transfer properties were examined experimentally and theoretically. We show that the sulfur-containing compound has a much smaller emission quantum yield than its oxygen counterpart. The fluorescence quantum yield is much higher upon formation of the difluoroboranyl complex.