Element decoupling of 7T dipole body arrays by EBG metasurface structures: Experimental verification

J Magn Reson. 2016 Aug:269:87-96. doi: 10.1016/j.jmr.2016.05.017. Epub 2016 May 26.

Abstract

Metasurfaces are artificial electromagnetic boundaries or interfaces usually implemented as two-dimensional periodic structures with subwavelength periodicity and engineered properties of constituent unit cells. The electromagnetic bandgap (EBG) effect in metasurfaces prevents all surface modes from propagating in a certain frequency band. While metasurfaces provide a number of important applications in microwave antennas and antenna arrays, their features are also highly suitable for MRI applications. In this work we perform a proof-of-principle experiment to study finite structures based on mushroom-type EBG metasurfaces and employ them for suppression of inter-element coupling in dipole transceive array coils for body imaging at 7T. We firstly show experimentally that employment of mushroom structures leads to reduction of coupling between adjacent closely-spaced dipole antenna elements of a 7T transceive body array, which reduces scattering losses in neighboring channels. The studied setup consists of two active fractionated dipole antennas previously designed by the authors for body imaging at 7T. These are placed on top of a body-mimicking phantom and equipped with the manufactured finite-size periodic structure tuned to have EBG properties at the Larmor frequency of 298MHz. To improve the detection range of the B1+ field distribution of the top elements, four additional elements were positioned along the bottom side of the phantom. Bench measurements of a scattering matrix showed that coupling between the two top elements can be considerably reduced depending on the distance to the EBG structure. On the other hand, the measurements performed on a 7T MRI machine indicated redistribution of the B1+ field due to interaction between the dipoles with the structure. When the structure is located just over two closely spaced dipoles, one can reach a very high isolation improvement of -14dB accompanied by a strong field redistribution. In contrast, when put at a certain height over the antennas the structure provides a moderate isolation improvement together with a slight increase of B1+ level. This study provides a tool for the decoupling of dipole antennas in ultrahigh field transceive arrays, possibly resulting in denser element placement and/or larger subject-element spacing.

Keywords: Decoupling; Dipole antennas; Electromagnetic bandgap; Magnetic resonance imaging; Metasurfaces; Multi-transmit; RF field distribution.

Publication types

  • Research Support, Non-U.S. Gov't