Langmuir-Blodgett Films of the Metal-Organic Framework MIL-101(Cr): Preparation, Characterization, and CO2 Adsorption Study Using a QCM-Based Setup

ACS Appl Mater Interfaces. 2016 Jun 29;8(25):16486-92. doi: 10.1021/acsami.6b04272. Epub 2016 Jun 20.

Abstract

This work reports the fabrication and characterization of Langmuir-Blodgett films of nanoparticles (size 51 ± 10 nm) of the metal organic framework MIL-101(Cr). LB film characterization by SEM, UV-vis, GIXRD, and QCM has shown that the addition of 1 wt % of behenic acid to MOF dispersion allows obtaining dense monolayers at the air-water interface that can be deposited onto solid substrates of different nature with transfer ratios close to 1. Moreover, a QCM-based setup has been built and used for the first time to measure CO2 adsorption isotherms at 303 K on MOF LB films, proving that LB films with MOF masses between 1.2 (1 layer) and 2.3 (2 layers) μg can be used to obtain accurate adsorption values at 100 kPa, similar to those obtained by conventional adsorption methods that require much larger MOF quantities (tens of milligrams).

Keywords: CO2 adsorption; Langmuir and Langmuir−Blodgett (LB) films; MIL-101(Cr); metal organic framework; nanoparticles (NPs); quartz crystal microbalance (QCM).