Trimethylsilyl Chloride-Modified Li Anode for Enhanced Performance of Li-S Cells

ACS Appl Mater Interfaces. 2016 Jun 29;8(25):16386-95. doi: 10.1021/acsami.6b02612. Epub 2016 Jun 20.

Abstract

A facile and effective method to modify Li anode for Li-S cells by exposing Li foils to tetrahydrofuran (THF) solvent, oxygen atmosphere and trimethylsilyl chloride ((CH3)3SiCl) liquid in sequence is proposed. The results of SEM and XPS show the formation of a homogeneous and dense film with a thickness of 84 nm on Li metal surface. AC impedance and polarization test results show the improved interfacial stability. The interfacial resistances as well as polarization potential difference have obviously decreased as compared with that of a pristine Li anode. CV and charge-discharge test results demonstrate that more reversible discharge capacity and higher Coulombic efficiency can be achieved. Specific capacity of 760 mAh g(-1) and an average Coulombic efficiency of 98% are retained after 100 cycles at 0.5C without LiNO3 additive. Additionally, the Li-S cell with a modified Li anode displays a greatly improved rate performance with ∼425 mAh g(-1) at 5C, making it more attractive and competitive in the applications of high-power supply.

Keywords: Li anode; Li−S cell; shuttle effect; surface modification; trimethylsilyl chloride.