Single-Molecule Reaction Chemistry in Patterned Nanowells

Nano Lett. 2016 Jul 13;16(7):4679-85. doi: 10.1021/acs.nanolett.6b02149. Epub 2016 Jun 7.

Abstract

A new approach to synthetic chemistry is performed in ultraminiaturized, nanofabricated reaction chambers. Using lithographically defined nanowells, we achieve single-point covalent chemistry on hundreds of individual carbon nanotube transistors, providing robust statistics and unprecedented spatial resolution in adduct position. Each device acts as a sensor to detect, in real-time and through quantized changes in conductance, single-point functionalization of the nanotube as well as consecutive chemical reactions, molecular interactions, and molecular conformational changes occurring on the resulting single-molecule probe. In particular, we use a set of sequential bioconjugation reactions to tether a single-strand of DNA to the device and record its repeated, reversible folding into a G-quadruplex structure. The stable covalent tether allows us to measure the same molecule in different solutions, revealing the characteristic increased stability of the G-quadruplex structure in the presence of potassium ions (K(+)) versus sodium ions (Na(+)). Nanowell-confined reaction chemistry on carbon nanotube devices offers a versatile method to isolate and monitor individual molecules during successive chemical reactions over an extended period of time.

Keywords: Single-molecule; biofunctionalization; carbon nanotubes; electrical conductance; electronic devices; sensors.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • DNA / chemistry*
  • G-Quadruplexes*
  • Ions
  • Nanotubes, Carbon*
  • Nucleic Acid Conformation

Substances

  • Ions
  • Nanotubes, Carbon
  • DNA