Inflammatory myofibroblastic tumor (IMT) is a rare neoplasm. Approximately 50 % of IMTs show an anaplastic lymphoma kinase (ALK) gene fusion resulting in ALK overexpression on immunohistochemistry (IHC). A novel anti-ALK monoclonal antibody (D5F3) has been suggested to be of superior sensitivity to the ALK1 antibody which is currently used. We compared the performance of D5F3 in detecting ALK protein expression in IMTs from various anatomic sites compared to the currently utilized ALK1. We selected 25 IMTs from our surgical pathology files (2005-2015). The novel rabbit monoclonal anti-human CD246 (clone D5F3) and the currently used mouse monoclonal anti-human CD246 (clone ALK1) were used for immunohistochemical staining (IHC) in an automated slide stainer. The percentage of immunoreactive tumor cells (0, <5 %, 5-50 %, >50 %) and cytoplasmic staining intensity (graded 0-3) were assessed and compared between the two antibodies. Fluorescence in situ hybridization (FISH) studies for ALK gene rearrangement were performed on 11 tumors. D5F3 antibody stained 76 % and ALK1 antibody stained 72 % of IMTs (p = 0.747). Compared to staining with ALK1, D5F3 stained a higher proportion of cases extensively (>50 % cells) (76 vs. 28 %, p < 0.001) and with high intensity (grade 3 76 % vs 0; p < 0.001). FISH and IHC findings (for both antibodies) were concordant in 9/10 (90 %) IMTs, in which results were informative. The novel anti-ALK rabbit monoclonal antibody (D5F3 clone) demonstrates superior overall performance in term of intensity and extent of staining of ALK protein in IMT. We found IHC staining with both antibody clones to correlate equally well with FISH results for detection of ALK rearrangement.
Keywords: Anaplastic lymphoma kinase (ALK); Fluorescence in situ hybridization (FISH); Immunohistochemistry (IHC); Inflammatory myofibroblastic tumor (IMT).