Tellurium-containing photoresponsive polyelectrolyte multilayer films were fabricated by layer-by-layer assembly of a tellurium-containing polymer, photosensitizer, and poly(styrenesulfonate). The resulting films were investigated by UV/vis spectroscopy, XPS, EPR, and fluorescence spectroscopy. Under visible light, the photosensitizer in the film is excited and transforms triplet oxygen into singlet oxygen in aqueous solution. Singlet oxygen oxidizes -Te- to high valence state (Te═O) on the polymer backbone. The generated (Te═O) group makes the micelles more hydrophilic and looser, thereby facilitating the controlled release of the loaded cargo of micelles. These results show that the film has the potential to be used for cargo loading and controlled release, thus may provide a new way to combine photodynamic therapy and chemotherapy.
Keywords: chemotherapy; layer-by-layer; photodynamic therapy; stimuli-responsive; tellurium.