Rechargeable aqueous metal-ion batteries made from non-flammable and low-cost materials offer promising opportunities in large-scale utility grid applications, yet low voltage and energy output, as well as limited cycle life remain critical drawbacks in their electrochemical operation. Here we develop a series of high-voltage aqueous metal-ion batteries based on 'M(+)/N(+)-dual shuttles' to overcome these drawbacks. They utilize open-framework indium hexacyanoferrates as cathode materials, and TiP2O7 and NaTi2(PO4)3 as anode materials, respectively. All of them possess strong rate capability as ultra-capacitors. Through multiple characterization techniques combined with ab initio calculations, water-mediated cation intercalation of indium hexacyanoferrate is unveiled. Water is supposed to be co-inserted with Li(+) or Na(+), which evidently raises the intercalation voltage and reduces diffusion kinetics. As for K(+), water is not involved in the intercalation because of the channel space limitation.