Background: Targeted next generation sequencing (tNGS) is increasingly used in oncology for therapeutic decision-making, but is not yet widely used for prostate cancer. The objective of this study was to determine current clinical utility of tNGS for prostate cancer management.
Methods: Seven academic genitourinary medical oncologists recruited and consented patients with prostate cancer, largely with unusual clinical and/or pathologic features, from 2013 to 2015. UW-OncoPlex was performed on formalin-fixed, paraffin-embedded (FFPE) primary tumors and/or metastatic biopsies. Results were discussed at a multidisciplinary precision tumor board prior to communicating to patients. FFPE tumor DNA was extracted for tNGS analysis of 194 cancer-associated genes. Results, multidisciplinary discussion, and treatment changes were recorded.
Results: Forty-five patients consented and 42 had reportable results. Findings included mutations in genes frequently observed in prostate cancer. We also found alterations in genes where targeted treatments were available and/or in clinical trials. 4/42 (10%) cases, change in treatment directly resulted from tNGS and multidisciplinary discussion. In 30/42 (71%) cases additional options were available but not pursued and/or were pending. Notably, 10/42 (24%) of patients harbored suspected germline mutations in moderate or high-penetrance cancer risk genes, including BRCA2, TP53, ATM, and CHEK2. One patient's tumor had bi-allelic MSH6 mutation and microsatellite instability. In total, 34/42 (81%) cases resulted in some measure of treatment actionability. Limitations include small size and limited clinical outcomes.
Conclusions: Targeted NGS tumor sequencing may help guide immediate and future treatment options for men with prostate cancer. A substantial subset had germline mutations in cancer predisposition genes with potential clinical management implications for men and their relatives. Prostate 76:1303-1311, 2016. © 2016 Wiley Periodicals, Inc.
Keywords: NGS; panel testing; precision tumor board; prostate cancer; targeted next generation sequencing.
© 2016 Wiley Periodicals, Inc.