Coordination Chemistry and Structural Dynamics of a Long and Flexible Piperazine-Derived Ligand

Inorg Chem. 2016 Jul 5;55(13):6692-702. doi: 10.1021/acs.inorgchem.6b00933. Epub 2016 Jun 21.

Abstract

A long and highly flexible internally functionalized dipyridyl ligand α,α'-p-xylylenebis(1-(4-pyridylmethylene)-piper-4-azine), L, has been employed in the synthesis of a series of coordination polymer materials with Co(II), Cd(II), and Ag(I) ions. In poly-[Cd(L)(TPA)] 1 and poly-[Co(L)(IPA)], 2, (TPA = terephthalate, IPA = isophthalate) the ligand adopts a similar linear conformation to that seen in the structure of the unbound molecule and provides a long (2.6 nm) metal-metal bridging distance. Due to the mismatch of edge lengths with that provided by the carboxylate coligands, geometric distortions from the regular dia and (4,4) network geometries for 1 and 2, respectively, are observed. In poly-[Ag2(CF3SO3)2(L)], 3, the ligand coordinates through both pyridine groups and two of the four piperazine nitrogen donors, forming a high-connectivity 2-dimensional network. The compound poly-[Ag2(L)](BF4)2·2MeCN, 4, a porous 3-dimensional cds network, undergoes a fascinating and rapid single-crystal-to-single-crystal rearrangement on exchange of the acetonitrile guests for water in ambient air, forming a nonporous hydrated network poly-[Ag2(L)](BF4)2·2H2O, 5, in which the well-ordered guest water molecules mediate the rearrangement of the tetrafluoroborate anions and the framework itself through hydrogen bonding. The dynamics of the system are examined in greater detail through the preparation of a kinetic product, the dioxane-solvated species poly-[Ag2(L)](BF4)2·2C4H8O2, 6, which undergoes a slow conversion to 5 over the course of approximately 16 h, a transition which can be monitored in real time. The reverse transformation can also be observed on immersing the hydrate 5 in dioxane. The structural features and physical properties of each of the materials can be rationalized based on the flexible and multifunctional nature of the ligand molecule, as well as the coordination behavior of the chosen metal ions.