In chronic kidney disease (CKD), simultaneous mineral and skeleton changes are prevalent, known as CKD-mineral bone disorder (CKD-MBD). Arterial calcification (AC) is a clinically important complication of CKD-MBD. It can increase arterial stiffness, which leads to severe cardiovascular events. However, current treatments have little effect on regression of AC, as its mechanisms are still unclear. There are multiple risk factors of AC, among which Malnutrition-Inflammation Complex Syndrome (MICS) is a new and crucial one. MICS, a combined syndrome of malnutrition and inflammation, generally begins at the early stage of CKD and becomes obvious in end-stage renal disease (ESRD). It was linked to reverse epidemiology and associated with increased cardiovascular mortality in ESRD patients. Recent data suggest that MICS can trigger CKD-MBD and accelerate the course of AC. In this present review, we summarize the recent understanding about the aggravating effects of MICS on AC and discuss the possible underlying mechanisms. A series of findings indicate that targeting MICS will provide a potential strategy for treating AC in CKD.
Keywords: arterial calcification; chronic kidney disease; chronic kidney disease-mineral bone disorder; malnutrition-inflammation complex syndrome; vascular smooth muscle cells.
Copyright © 2016 the American Physiological Society.