As a way to prevent resource depletion by other species, many phototrophic aquatic microorganisms produce inhibitory compounds. This process, known as allelopathy, has been widely studied in planktonic environments, where it is recognized as being a driving force of planktonic communities. However, in benthic environments, biofilms provide very particular micro-environments. The present review focuses on allelopathic interactions involving benthic phototrophic prokaryotes and micro-eukaryotes ('microalgae'), which generally form biofilms, and includes any interaction involving benthic microalgae either as the emitter or as the target in both marine and freshwater habitats. To support our hypothesis on the importance of allelopathy in biofilms due to the particularities of biofilms, we show that (i) reported allelopathic species and compounds are diverse and numerous in the three major groups of benthic phototrophic microorganisms, (ii) allelopathic benthic species could affect community composition, (iii) allelopathy in biofilms is currently underestimated because of the lack of suitable methods. As benthic primary producers represent an important source of organic carbon in some streams and littoral areas, these interactions could impact the whole ecosystem in these areas, probably more than in areas dominated by planktonic communities.
© 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.