Co(III)-Carbene Radical Approach to Substituted 1H-Indenes

J Am Chem Soc. 2016 Jul 20;138(28):8968-75. doi: 10.1021/jacs.6b05434. Epub 2016 Jul 8.

Abstract

A new strategy for the catalytic synthesis of substituted 1H-indenes via metalloradical activation of o-cinnamyl N-tosyl hydrazones is presented, taking advantage of the intrinsic reactivity of a Co(III) carbene radical intermediate. The reaction uses readily available starting materials and is operationally simple, thus representing a practical method for the construction of functionalized 1H-indene derivatives. The cheap and easy to prepare low spin cobalt(II) complex [Co(II)(MeTAA)] (MeTAA = tetramethyltetraaza[14]annulene) proved to be the most active catalyst among those investigated, which demonstrates catalytic carbene radical reactivity for a nonporphyrin cobalt(II) complex, and for the first time catalytic activity of [Co(II)(MeTAA)] in general. The methodology has been successfully applied to a broad range of substrates, producing 1H-indenes in good to excellent yields. The metallo-radical catalyzed indene synthesis in this paper represents a unique example of a net (formal) intramolecular carbene insertion reaction into a vinylic C(sp(2))-H bond, made possible by a controlled radical ring-closure process of the carbene radical intermediate involved. The mechanism was investigated computationally, and the results were confirmed by a series of supporting experimental reactions. Density functional theory calculations reveal a stepwise process involving activation of the diazo compound leading to formation of a Co(III)-carbene radical, followed by radical ring-closure to produce an indanyl/benzyl radical intermediate. Subsequent indene product elimination involving a 1,2-hydrogen transfer step regenerates the catalyst. Trapping experiments using 2,2,6,6-tetra-methylpiperidine-1-oxyl (TEMPO) radical or dibenzoylperoxide (DBPO) confirm the involvement of cobalt(III) carbene radical intermediates. Electron paramagnetic resonance spectroscopic spin-trapping experiments using phenyl N-tert-butylnitrone (PBN) reveal the radical nature of the reaction.

Publication types

  • Research Support, Non-U.S. Gov't