Genome engineering is a powerful tool for a wide range of applications in biomedical research and medicine. The development of the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system has revolutionized the field of gene editing, thus facilitating efficient genome editing through the creation of targeted double-strand breaks of almost any organism and cell type. In addition, CRISPR-Cas9 technology has been used successfully for many other purposes, including regulation of endogenous gene expression, epigenome editing, live-cell labelling of chromosomal loci, edition of single-stranded RNA and high-throughput gene screening. The implementation of the CRISPR-Cas9 system has increased the number of available technological alternatives for studying gene function, thus enabling generation of CRISPR-based disease models. Although many mechanistic questions remain to be answered and several challenges have yet to be addressed, the use of CRISPR-Cas9-based genome engineering technologies will increase our knowledge of disease processes and their treatment in the near future.
Keywords: CRISPR; Cas9; animal models; biomedicine; cancer; gene editing; genome engineering; human disease.
© The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please email: [email protected].