MicroRNAs (miRs) are often located in genomic breakpoint regions and are hypothesized to be important regulators involved in the regulation of critical cell processes, including cell apoptosis, proliferation and differentiation. miR-299 has been reported to be upregulated in acute promyelocytic leukemia (APL); however, the function and mechanistic role of miR-299 in APL remains unknown. The present study demonstrated mir-299 significantly induced cell growth and cell cycle progression at the G1/S transition in APL cells. Notably, the present study revealed that miR-299-5p induces these effects, whereas miR-299-3p does not. Additional studies demonstrated that in APL cells the tumor suppressor p21Cip1/Waf1 is a downstream target of miR-299; miR-299 binds directly to the 3' untranslated region of p21Cip1/Waf1, and reduces protein, but not mRNA, levels of p21Cip1/Waf1. The present findings demonstrate that miR-299 exerts growth-promoting effects in APL cells through the suppression of p21Cip1/Waf1. Overall, the present study demonstrates that p21Cip1/Waf1 is a direct functional target of miR-299 in APL.
Keywords: acute promyelocytic leukemia; miR-299; p21Cip1/Waf1.