Emerging diseases may spread rapidly through dense and large urban contact networks. We constructed a simple but novel dual-contact network model to account for both airborne contact and close contact of individuals in the densely populated city of Hong Kong. The model was then integrated with an existing epidemiological susceptible-exposed-infectious-recovered (SEIR) model, and we used a revised Wells-Riley model to estimate infection risks by the airborne route and an exponential dose-response model for risks by the contact and droplet routes. A potential outbreak of partially airborne influenza was examined, assuming different proportions of transmission through the airborne route. Our results show that building ventilation can have significant effects in airborne transmission-dominated conditions. Moreover, even when the airborne route only contributes 20% to the total infection risk, increasing the ventilation rate has a strong influence on transmission dynamics, and it also can achieve control effects similar to those of wearing masks for patients, isolation and vaccination.
Keywords: Building ventilation; Influenza; Partially airborne route; Urban contact network.
Copyright © 2016 Elsevier B.V. All rights reserved.