In situ characterization of protein aggregates in human tissues affected by light chain amyloidosis: a FTIR microspectroscopy study

Sci Rep. 2016 Jul 4:6:29096. doi: 10.1038/srep29096.

Abstract

Light chain (AL) amyloidosis, caused by deposition of amyloidogenic immunoglobulin light chains (LCs), is the most common systemic form in industrialized countries. Still open questions, and premises for developing targeted therapies, concern the mechanisms of amyloid formation in vivo and the bases of organ targeting and dysfunction. Investigating amyloid material in its natural environment is crucial to obtain new insights on the molecular features of fibrillar deposits at individual level. To this aim, we used Fourier transform infrared (FTIR) microspectroscopy for studying in situ unfixed tissues (heart and subcutaneous abdominal fat) from patients affected by AL amyloidosis. We compared the infrared response of affected tissues with that of ex vivo and in vitro fibrils obtained from the pathogenic LC derived from one patient, as well as with that of non amyloid-affected tissues. We demonstrated that the IR marker band of intermolecular β-sheets, typical of protein aggregates, can be detected in situ in LC amyloid-affected tissues, and that FTIR microspectroscopy allows exploring the inter- and intra-sample heterogeneity. We extended the infrared analysis to the characterization of other biomolecules embedded within the amyloid deposits, finding an IR pattern that discloses a possible role of lipids, collagen and glycosaminoglycans in amyloid deposition in vivo.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Abdominal Fat / metabolism
  • Abdominal Fat / pathology
  • Amyloidogenic Proteins / chemistry
  • Amyloidogenic Proteins / metabolism*
  • Female
  • Humans
  • Immunoglobulin Light Chains / chemistry
  • Immunoglobulin Light Chains / metabolism
  • Immunoglobulin Light-chain Amyloidosis / metabolism*
  • Immunoglobulin Light-chain Amyloidosis / pathology
  • Male
  • Myocardium / metabolism*
  • Myocardium / pathology
  • Plaque, Amyloid / metabolism*
  • Plaque, Amyloid / pathology
  • Protein Aggregation, Pathological / metabolism*
  • Protein Binding
  • Protein Conformation, beta-Strand
  • Spectroscopy, Fourier Transform Infrared

Substances

  • Amyloidogenic Proteins
  • Immunoglobulin Light Chains