The present study investigated the expression and localization of angiopoietin (ANPT) family members in buffalo ovarian follicles of different size. It also looked at the role of ANPTs in estradiol secretion and mRNA expression of phosphoinositide-3-kinase-protein kinase B signaling pathway cellular proliferation (phosphoinositide-dependant kinase and protein kinase B [AKT]) and proapoptotic (BAD) factors with caspase 3 in cultured buffalo granulosa cells (GCs). The mRNA and protein expression of ANPT-1 was greatest (P < 0.05), whereas ANPT-2 was reduced (P < 0.05) in preovulatory follicles as compared to F1 follicle. Tyrosine kinase with immunoglobulin-like and EGF-like domains 1 transcripts and protein expression did not change in all follicular groups, whereas tyrosine kinase with immunoglobulin-like and EGF-like domains 2 mRNA was highest (P < 0.05) in theca interna but not GC layer of preovulatory follicle. All members of ANPT family were localized in GC and theca interna showing a stage specific immunoreactivity. Cultured GCs were treated with ANPT-1 and ANPT-2 separately at doses of 1, 10, and 100 ng/mL and in combination at 100 ng/mL for three incubation periods (24, 48, and 72 hours). Estradiol secretion was highest (P < 0.05) at 100 ng/mL at 72 hours of incubation when GCs were treated with either protein alone. The mRNA expression of phosphoinositide-dependant kinase and AKT was highest (P < 0.05), and BAD with caspase 3 was lowest (P < 0.05) at 100 ng/mL at 72 hours of incubation, when cultured GCs were treated separately with each protein or in combination. The immuoreactivity of AKT, pAKT, and pBAD were maximal, whereas BAD was minimal with 100 ng/mL at 72 hours when cultured GCs treated with either protein alone. The findings indicate that ANPTs are expressed in a regulated manner in buffalo ovarian follicle during different stages of development where they may promote steroidogenesis and GC survival through autocrine and paracrine actions.
Keywords: Angiopoietin; Buffalo; Estradiol; Follicle; Growth factor.
Copyright © 2016 Elsevier Inc. All rights reserved.