Synthesis and Antimicrobial Activity of 1,2-Benzothiazine Derivatives

Molecules. 2016 Jun 30;21(7):861. doi: 10.3390/molecules21070861.

Abstract

A number of 1,2-benzothiazines have been synthesized in a three-step process. Nine chalcones 1-9 bearing methyl, fluoro, chloro and bromo substituents were chlorosulfonated with chlorosulfonic acid to generate the chalcone sulfonyl chlorides 10-18. These were converted to the dibromo compounds 19-27 through reaction with bromine in glacial acetic acid. Compounds 19-27 were reacted with ammonia, methylamine, ethylamine, aniline and benzylamine to generate a library of 45 1,2-benzothiazines 28-72. Compounds 28-72 were evaluated for their antimicrobial activity using broth microdilution techniques against two Gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus) and two Gram-negative bacteria (Proteus vulgaris and Salmonella typhimurium). The results demonstrated that none of the compounds showed any activity against Gram-negative bacteria P. vulgaris and S. typhimurium; however, compounds 31, 33, 38, 43, 45, 50, 53, 55, 58, 60, 63 and 68 showed activity against Gram-positive bacteria Bacillus subtilis and Staphylococcous aureus. The range of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) was 25-600 µg/mL, though some of the MIC and MBC concentrations were high, indicating weak activity. Structure activity relationship studies revealed that the compounds with a hydrogen atom or an ethyl group on the nitrogen of the thiazine ring exerted antibacterial activity against Gram-positive bacteria. The results also showed that the compounds where the benzene ring of the benzoyl moiety contained a methyl group or a chlorine or bromine atom in the para position showed higher antimicrobial activity. Similar influences were identified where either a bromine or chlorine atom was in the meta position.

Keywords: 1,2-benzothiazines; Bacillus subtilis; Proteus vulgaris; Salmonella typhimurium; Staphylococcous aureus; chalcones.

MeSH terms

  • Anti-Infective Agents / chemical synthesis*
  • Anti-Infective Agents / chemistry
  • Anti-Infective Agents / pharmacology*
  • Magnetic Resonance Spectroscopy
  • Microbial Sensitivity Tests
  • Molecular Structure
  • Structure-Activity Relationship
  • Thiazines / chemical synthesis*
  • Thiazines / chemistry
  • Thiazines / pharmacology*

Substances

  • 1,2-benzothiazine
  • Anti-Infective Agents
  • Thiazines