Inhibitor of growth 4 is a member of the inhibitor of growth family proteins, which is involved in cell apoptosis, migration, invasion, and cell cycle progress. In this study, we investigated the inhibitor of growth 4 level in non-small cell lung cancer tissues and explored the antitumor activity of inhibitor of growth 4 in vitro and in vivo using non-small cell lung cancer cell line SPC-A1 and its underlying molecular mechanisms. We also explored its role on the radiosensitivity in SPC-A1 cells. The level of inhibitor of growth 4 protein was significantly decreased in 28 cases of non-small cell lung cancer tissues in comparison with corresponding noncancerous lung epithelial tissues. Upregulation of inhibitor of growth 4 by plasmid pcDNA3.1-ING4 delivery could suppress proliferation and increase apoptosis of SPC-A1 cells both in vitro and in vivo. Additionally, we found that overexpression of inhibitor of growth 4 in SPC-A1 cell line could lead to a higher Bcl-2/Bax ratio, which might be an important factor in the apoptosis regulation. Furthermore, overexpression of inhibitor of growth 4 enhanced the radiosensitivity of SPC-A1 cells to irradiation. Inhibitor of growth 4 upregulation plus radiotherapy induced synergistic tumor suppression in SPC-A1 xenografts implanted in athymic nude mice. Thus, the restoration of inhibitor of growth 4 function might provide a potential strategy for non-small cell lung cancer radiosensitization.
Keywords: ING4; NSCLC; apoptosis; gene therapy; radiosensitivity.