Interfacial properties of binary mixtures of square-well molecules from Monte Carlo simulation

J Chem Phys. 2016 Apr 21;144(15):154705. doi: 10.1063/1.4947017.

Abstract

We determine the interfacial properties of mixtures of spherical square-well molecules from direct simulation of the vapor-liquid interface. We consider mixtures with the same molecular size and intermolecular potential range but different dispersive energy parameter values. We perform Monte Carlo simulations in the canonical ensemble to obtain the interfacial properties of mixtures of square-well molecules. In particular, we determine the pressuretensor using the mechanical (virial) route and the vapor-liquid interfacial tension evaluated using the Irving-Kirkwood method. In addition to the pressuretensor and the surface tension, we also obtain density profiles, coexistence densities, and interfacial thickness as functions of pressure, at a given temperature. This work can be considered as the extension of our previous work [F. J. Martínez-Ruiz and F. J. Blas, Mol. Phys. 113, 1217 (2015)] to deal with mixtures of spherical molecules that interact through a discontinuous intermolecular potential. According to our results, the main effect of increasing the ratio between the dispersive energy parameters of the mixture, ϵ22/ϵ11, is to sharpen the vapor-liquid interface and to increase the width of the biphasic coexistence region. Particularly interesting is the presence of a relative maximum in the density profiles of the more volatile component at the interface. This maximum is related with adsorption or accumulation of these molecules at the interface, since there are stronger attractive interactions between these molecules in comparison with the rest of intermolecular interactions. Also, the interfacial thickness decreases and the surface tension increases as ϵ22/ϵ11 is larger, a direct consequence of the increasing of the cohesive energy of the system.