The flexibility of a homeodomain transcription factor heterodimer and its allosteric regulation by DNA binding

FEBS J. 2016 Aug;283(16):3134-54. doi: 10.1111/febs.13801. Epub 2016 Jul 25.

Abstract

Transcription factors are known to modify the DNA that they bind. However, DNA can also serve as an allosteric ligand whose binding modifies the conformation of transcriptional regulators. Here, we describe how heterodimer PBX1:PREP1, formed by proteins playing major roles in embryonic development and tumorigenesis, undergoes an allosteric transition upon DNA binding. We demonstrate through a number of biochemical and biophysical methods that PBX1:PREP1 exhibits a structural change upon DNA binding. Small-angle X-ray scattering (SAXS), circular dichroism (CD), isothermal titration calorimetry (ITC), and limited proteolysis demonstrate a different shape, α-helical content, thermodynamic behavior, and solution environment of the holo-complex (with DNA) compared to the apo-complex (without DNA). Given that PBX1 as such does not have a defined DNA selectivity, structural changes upon DNA binding become major factors in the function of the PBX1:PREP1 complex. The observed changes are mapped at both the amino- and carboxy-terminal regions of the two proteins thereby providing important insights to determine how PBX1:PREP1 dimer functions.

Database: Small-angle scattering data are available in SASBDB under accession numbers SASDAP7, SASDAQ7, and SASDAR7.

Keywords: conformational change; oncogene; protein-DNA interaction; small-angle X-ray scattering; tumor suppressor.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Allosteric Regulation
  • DNA / chemistry
  • DNA / metabolism*
  • DNA-Binding Proteins / chemistry*
  • DNA-Binding Proteins / metabolism
  • Homeodomain Proteins / chemistry*
  • Homeodomain Proteins / metabolism
  • Models, Molecular
  • Protein Binding
  • Protein Conformation
  • Protein Multimerization
  • Sequence Deletion
  • Thermodynamics
  • Transcription Factors / chemistry*
  • Transcription Factors / metabolism

Substances

  • DNA-Binding Proteins
  • Homeodomain Proteins
  • Transcription Factors
  • DNA