In situ external magnetic field was applied during the synthesis of FePt nanoparticles via a chemical solution method. FePt nanoparticle films were prepared on Si by a drop-coating method with and without a magnetic field. Annealing at 700 °C in reductive atmosphere was explored to obtain ferromagnetic FePt L10 phase. The effect of in situ-applied magnetic field on the structure, morphology, and magnetic properties of FePt nanoparticle films was characterized. It is found that the applied magnetic field during the chemical synthesis of FePt nanoparticles plays a key role in the crystallinity and magnetic property of FePt nanoparticle films. As-synthesized FePt nanoparticles under the magnetic field are monodispersed and can be self-assembled over a larger area by a dropping method. The applied magnetic field during the synthesis of FePt nanoparticles not only significantly improves the nanoparticles' c-axis preferred orientation but also benefits the phase transition of FePt nanoparticles from face-centered cubic to face-centered tetragonal structure during the annealing process. The FePt nanoparticle films derived under magnetic field also show some magnetic anisotropy.
Keywords: Applied magnetic field; C-axis oriented; Chemical solution synthesis; L10-phase FePt; Magnetic anisotropy.